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OF DOWNWASH BEHIND WINGS OF ARBITRARY

FORM AT SUPERSONIC SPEEDS

By John C. Martin

Exact and approximate methods based upon linearized supersonic flow
theory have been developed for the calculation of the veloci~ potential
and the downwash from thin wings of arbitrary plan form. Particular
attention is given to the evaluation of the downwash in the plane of the
wing. The applicability of the method inherently depends upon a knowledge
of the load distribution over the plan form of the wing. General expres-
sions for the veloci~ potential and downwash have been derived. Simple
modifications of these expressions produced formulas for the velocity
potential and downwash from arbitrary curved lifting lines.

A complete development of all formulas; starting with the basic
solution of the linearized potential equation for supersonic flow, is
given. Although the paper con$ains many new results, some of the results
presented have been obtained by other methods and are given here solely
for completeness. The general formulation of the downwash equations can
easily be used in finding exact and approximate expressions for the other
veloci~ components.

The results of the theoretical development are used to determine the
downwash from a pitching rectangular wing and to determine the expression
for the local angle of attack necessary to give a specified load distri-
bution. Comparisons of the exact and approximate values of the downwash
for several lifting-line configurations are

INTRODUCTION

The calculation of the downwash fields

also presented.

induced by thin wings at
supersonic speeds is necessary in order to evaluate accurately the aero-

—

dynamic load distribution over the tail, an important consideration for
structural and stibili~ calculations. Available methods, including the
present, are based on the linearized-ttme-independentflow considerations.
These methods, in general, utilize the following well-lmown concepts:
conical flows, potential doublets, vortices, and pressure doublets. The
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conical-flow method is used in reference 1 to calculate the
flow fields in the plane of the wing for several plan forms

NACA TN 2135

downwash
including

the rectangular wing. The potential-doublet method is presented in ref-
erence 2 and is used to find the downwas.hbehind a triangular wing over ‘
a range of Mach nunhrs in reference 3. The vortex method is developed
for supersonic-flow applications in references k and 5 and is used in
reference 6 to find the downwash due to thin wings appro-ted by lifting
lines. The method used in reference 7 was the potential-doublet method;
however, by integationby parts Ward obtained an expression for the
velocity potentislLin space which agrees with the expression for the
velocity potential in space determined herein.

The present method is essentially a development of the pressure-
dotilet method for the calculation of downwash flow fields. This method
leads easily to expressions for the veloci~ potential atithe downwash
from arbitrary curved lifting lines. These eqressions in turn lead to
approximate expressions for the downwash from lifting lines. These
approximate expressions have many computational advantages.

The method described herein has certain advantages in that most of
the important results obtained by other methods can be obtained without
difficultyby using the present approach. Integrations are performed
only Orithe plan form; whereas other methods, excluding the conical-flow
method, generally lead to integrations on the plan form and over the
wake: An attempt was made to present a fairly canplete development df
the pressure-doubletmethod and at,the same time’present results which
have not been obtainedby other methods.

The accuracy of the developed approximate formulas is broughtout
in the evaluation of a rectangular’pitchingwingby use of exact (lin-
earized) and approximate expressions. Comparisons are made between
exact.calculations of the downwash from certain lifting lines and
approximate expressions. Other applications include some shple deriv-
ations of known results plus an expression for the local angle of attack
necessary to give a specified load distribution.

\

,

c chord

b/2 semispan

L1)L2 xl limits of integration

P. pressure coefficient (tiess++@)

f denotes finite ~ of integral

.
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R’ = 1“2-92P+z’)

. .

equation of an arbitrary line

variable index ‘

a constant

yl limits of integration

free-stresm Mach number

slope of line

limits of summation

angulsr veloci~ about y-axis

R= 1X2 - ~2(Y2 + Z2)

v

x=x-xl, Y=y-yl,

X,y,z,xl,yl)zl

a

free-stream velocity

Zz= -Zl, Xi=x-xij Yi=y-y~

Cartesian coordinates

increments in xl and yl, respectively

angle of attack

j3.$tf24

r

G

k

P

u

circulation

a small positive nqnber - ~
.,

an atiliary variable
.,- .

free-stream densi~ .’..
.“.-: ,,”.,

local.angle of attack ‘-’-~ ‘I
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area of plan form in forward Mach cone from
point (x,y,z)

srea of plan form and
from point (x,y,z)

perturbation veloci~

increment in velocity

wake in forward Mach cone

potential

potential at point
(X,yjz) due to an elementary lifting area
at pint

(XIYYIY
o
)

difference in partial derivative of @ with
respect to xl x~u - dx12)($

value of potential difference at trailing edge

(rm - @~~)

vertical ~rturbation velocity at point (x,y,z)
due to regions I, II, and III, respectively

line integral around area of plan form in
forward Mach cone from point (x,y,O)

.

upper and lower surfaces, respectively

partial derivatives with respect to x, y,
and 2, respectively

trailing edge

THEORY

The theoretical develo~nt is divided into three parts: First,
general formulas are derived for the potential and the upwash in space
due to a thin lifting surface; the pressure distribution on the surface
is assumed to be known. Second, because the formulas in the first psrt
are in many cases difficult to evaluate, the expressions for the thin
wing are used to develop formul~s for the potential or upwash in space
due to lifting lines. Third, because in some cases the expressions for
lifting lines are difficult to evaluate, approximate expressions are also
derived for the upwash from lifting lines.
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Lifting Surfaces

Potential in space.-
the perturbation velocity

The partial-differential equation satisfied by
potential in supersonic flow is

(1)

A general solution of equation (I) is given in reference 8. (The boundary
conditions for airfoils are given in reference 9.) For the purposes of the
present paper this solution maybe written in the-form

(2)

where ~ and jl$ are the values of @ on the upper and lower sides of
the surface z = z1. The finite part of the integral in equation (2)
must be taken as indicated by the symbol f. The double integrals that
arise will be dealt with according to the methods for finding the finite
part of the multiple integrals given by Hadamard in reference 8. !l?he
area of integration T’ is the area of the z = Z1 @ane for which

Equation (2) remains valid when the velocity potential is replaced
by its partial derivative with respect to the free-stream direction.
Since the pressure is directly proportional to ~, replacing @ by @x
in equation (2) has the effect of introducing a potential which is
directly proportional to the acceleration ~otential.

Since

J@(x,y,z) = x@x(X,y,z)dX
-m

it follows from equation (2) that

(3)

(4)

— .. . ...—. z ——-——. .—. . . --
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where

dR’(X) = (A-=)2 - ~2(y2 *Z2)
e

. NACA TN 2135 ,,

.
.

The

the

difference in @X1, @xlj is zero except on the plan form; therefore,

region of integration T is over the plan form only.

It is proved in reference 4 that the order of integration of the
finite p=t of a multiple integral can be changed. Equation (4) for
21=0 can therefore be expressed in the form

The integral

must be integrated from the ~tercone emanating

to the point (x,y,z) because a disturbance at
affects points in the aftercone fran the point

-2X
the preceding integral is

(Y2 + z2)R”

Equation (5) now becomes

j$(x,y,z)= A J A&l Zx

211 T (Y2 + Z2)R

In general, equation (6) is a finite integral;
parts symbol has been dropped. The expression

from point (xl,yl,O)

point (xl,yl,O) only ~.

(X1,Y1,O). The value of

,.
,.

(6)

therefore, the finite-
for the velocity potential

givenby eqyation (6) was obtained in reference 7 by a different approach
as indicated in the introduction. Equation (6) may also be readily obtained
from Volterra*s solution (referepce 10)0

.

-..——
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Upwash in space.- Perhaps the most frequently desired quantity is
the upwash @ . It is shown in the appendix tkt equation (6) may be
diffekentiate~ with respect to z under the integral signs without con-
sideration of the variable limits. The result of differentiatingboth
sides of equation (6) with respect to z is

[
- .2)# + #zyY2 + Z’2)y ml ml

@z = & ‘J ‘fix~‘Y2 (7)
T (Y2 + Z2)2R3

An eqmessioh for the sidewash due to a
be obtained in a manner similar to that

Upwash in the wake.- In the z = O
form or in the wake, equation (7) reduces to the form

discontinuous pressure sheet can
used in finding equation (7).

plane for points not on the plan

(8)

The restrictions on equation (8) can easily be understoodby comparing
it with equation (6). Equation (6) is an expression for the potential
in space due to a discontinuous pressure sheet. For points not on the
plan form or in the wake, it canbe seen from equations (6) and (8) that

@z(’,Y,o) = M..IuQ(x,y,z)
Z+oz

The preceding expression shows that in order for the right side of the
expression to be finite the potential must approach zero as z approaches
zero. It is well-known that the potential is zero in the z = O plane
for zero-thicknesswings except on the plan form or in the wake where the
potential has a finite discontinuity across this plane. Because @z is
in general finite and since the potential Ws a finite discontinuim
across the z = O plane in the wake and on the plan form, equation (8)
camot hold on the plan form or in the wake.

Equation (7) maybe used to find @z for points on the plan form
or in the wake by performing the integrations for an arbitrary z and
then setting z equal to zero. Generally the integrations for an arbi-
trary z me very difficult. Both integrations of equation (7) must be

... —.——.—---- -—.- . —.—— -—-’-—-.——— —— —-- ...“-—— —- - —-————--
—-.
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performed for points on the plan form; whereas, only the integration with
respect to yl is needed for points in the wake. The reason that one or
both integrations must be performed before taking the limit of #z as z
approaches zero is that the integrand tends to infinity along the line
y~=y as z approaches zero. The line yl = y must therefore be
removed from the area of integration. This line may be removed by
removing a nsrrow strip, of width e, on each side of the line yl . y
from the area of integration. (See fig. l(a).) The integrations mustbe
performed until the width e is removed from the limits of inte~ation.
The limit of $= as z approaches zero may then be taken. The limit
of @z as Z approaches zero cannot be taken until the limit of @z
as 6 approaches zero is taken unless the effect of the strip f,scon.
sidered. Figure l(b) shows the area of integration necesssry to evaluate
a point in the w&e. It canbe seen from this figure that the xl Mm3&
are independent of C; therefore, for points in the wake the xl inte-
gration need not be performed before the limits sxe taken.

The calculation of @z for points on the plan form or in the wake
can be considerably simplified by using a combination of equation (7) and
equation (8). For points in the wake, divide the area of integration as
shown in figure 2. Each region of the integration maybe considered as

, an independent wing with a local angle of attack necessary to give the
load distribution of the region. Since regions I and III can be con-
sidered as being two different plan forms, equation (8) can be applied
to regions I and III, but equation (7) must be applied to region II.
The value of e is chosen small; therefore, in region II the variation
of Z@x with ~ can be neglected in the first approximation provided
the pressure is continuous over the plan fo~. Pressure discontinuities
may be dealt with by subdividing the regions of integration.

The contribution of regions I and III to the vertical
veloci~ when z = O is

For a point above

perturbation

(9)

the wake the effect of region II is

A@Xl(XljY>@X [Y2 - Z2)R2 + ,2z2&

approximately

(lo)

.

.

—. - —z .. — —.—.. —.
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where

along

After

A@x(xI,y,O) is the difference in @x across the lifting surface

the line Y1 = y. The xl limits are denotedby L1 and L2.

integration with respect to yl equation (10) becomes

and for z = O 0

(U-)

For points in the wake
is then given-by the sum of

the resultant vertical perturbation velocity
equations (9) and (11):

(12)

Equation (12) is approximate when 6
of the approximation increases as e
the limit the equation is exact. The
is then given by .

is not zero; however, the accuracy
approaches zero and of course in
exact vertical perturbation velocity

[1@z(x,Y,o) =:$QO & &qx
— dyl dxl -

1+111 Y*

r i

(13)

—.—— .. ..— . ..— ——---- ————- -—--—--—--- —
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Equation (13) ‘canbe expressed in the form

,

NACA TN 21.35 ,

where the second integral is a
plan form affecting the point

line integral around the region of the
(X,y,o). Equation (14) was obtained from

equation (13) by ~integratingthe first term by psrts with reepect to Y1.

A consideration of the previous division of the plan form into
regions with regard to vortex distributions is helpful in understanding
the physical meaning of the preceding manipulations.

Equation (10) is the expression for the upwash from a series of
horseshoe vortices distributed over region II. The yl component of the

vortex strength is proportional to @x(xI,Y,O). The XI component of

the vortex strength is zero except along y - c and y+e. (See fig. 3.) .
The spanwise distribution of the trailing vortices consists
two vortices of finite stren@h @(x,Y,O) located ~OU

of only

and d.OIlg

Y1 =y+e

Equation (9) canbe considered as the expression for the vertical
perturbation veloci~ due to a system of vortices. The integral over
region I represents the effect of the bou,d md ~ailiu vortices
associated with region I plus a finite vortex (see fig; 3) along

This finite vortex is the sumof the y-components of tl@ vortex strength
along

“

—— . .. ——.—. ..— — .—— — .-. ———
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Since the divergence of a vortex field is zero, it is not surprising
that a vortex of finite strength exists along this line. The integral
over region III
associated with

— —
represents the effects of the.bound and trailing vortices
region III plus a vortex of finite strength along

yl=y+c

Equation (9) gives the effect on the field point of the vortex distri-
bution on regions I and III, the trailing vortices associated with the
vortices on regions I and III, and two vortices of finite strength

. located a distance e on either side of the line ~ = y. For any small
value of 6 the strengths of the two finite”vortices are almost equal
and, since the field point lies midway between these finite vortices, it
follows that equation (9) should tend to infinity as e approaches zero.
The infini~ arising from equation (9) as 6~0 is exactly canceledby
the infinity arising from eqmtion (n) as c+ O. A finite downwash
then results at the point (x,Y,O) within the wake region provided that
the spanwise derivative of the load distribution is continuous at y.

Upwash on the plan form.- In order to simplify the calculation of
on the plan form, consider an srbitrary point slightly above the plan
form and divide the srea of integration into regions as shown in figure
Region IV is small; therefore, the value of A@xl is approximately

constant in region IV. For points slightly abov= the plan form
contribution of region IV to
approximately

The result of perfoming the

the vertical perturbation-velocity

X[Y2 - Z2)R2 + ~2Z2(y2 + Z2j ~1

(Y2 + ~2)2=R3

integrations in eqmtion (15) is

the
is

VI (15)

(16)

Actually the point at the apex of the hyperbola is a singular point and
must be removed from the region of integration by a method such as is given
in reference 8, pages 147 to UO. The integrals over regions 1, II, and III
for points slightly above the plan form are given appro~tely.by equ&
tion (14). The vertical perturbation velocity #z is then appromtjely

given by (equation (14) plus equation (I_6)):

. .. —.—. —. .. . .—-— .-——.--~— —-— -—.— _ .--..—— .—.—.—. .- .-_—_ . .-
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(17)

Equation (17) is independent of e; therefore, it is exact for points on
the plan form. The result given by equation (17) was also obtained
independently by Dr. A. Busemann of the Langley Laboratory in an unpub-
lished analysis using a different approach.

Lifting Lines

Integrations that arise in evalmting the potential or,the downwash
from thin wings are in most cases very difficult to perform. For most
downwash problems reference 6 indicates that a lifting line canbe used
as a very good appro-tion. In this reference, formulas are developed
for the upwash in space due to lifting lines. In the present paper,
formulas are developed for the velocity pbtential and the upwash in space
due to lifting lines by using the same approach that was used to develop

-the previous formulas for the thin wings. The results for the upwash
agree with the corresponding results of reference 6.

Potential due to a lifting line.- The ~otential or upwash due to an
arbitrary curved lifting line can be found from the preceding results.

w

The following expression for the infinitesimal increment in the potential
due to an elementary lifting area canbe obtained from equation (6):

5@(X,yjZ) = A&l Zx
(18)

5X1 5Y1 23r(Y2+ Z2)R

The potential from an element of a lifting line is then -

where the product A@xl 5x1 is held constant as 5x1

(ig)

approaches zero.

The product A@xl bxl ‘isthe difference in potential because A@xl iS

constant in the x-direction. Since Ad is also the circulation, equa-
tion (19) canbe written

“

—-.. —.
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d@(x,y,z) =
rzx

q
27r(Y2+ Z2)R

13

(20)

where I’ denotes the circulation at point (xL,n).

Let the equation of the curve denoting an arbitrary lifting line be

Substituting this function into equation (20) and integrating yields the
equation

J@(%Y,’) =* % 2(X. f)r(~)
WI (22)

hl (y2 + Z2) x - f)p - p2(Y2 + Z2)

Upwash due to a lifting line.- The derivative of equation (22) with
respect to

@z(%Y,z’)=

z is

&f 2{~x. f)2-#YqY2-z2

1

[(x- f)z- B2(Y2+ 2253 (x- fy
231 Kfl

1 (Y2+ Z2)2DX - f)p- #(Y2+ z2j3/2

(23)

An expression for the sidewash due to a lifting line can be obtained in
a similar manner. For points in the z = O plane not directly behind
the lifting line, equation

@z(x,Y,o) =

For points directly behind
lifting line must be known
z = O plane.

(23) reduces to

1— (24)

the lifting line, however, the equation-of the
in order to evaluate equation (23) in the

. .. -—-..—— -—-— -—— ---.-— ‘— —-—.—.. .— — ——---- -- — —-
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Unbent lifting lines.-
located at x = a, ecpation

NACA TN 2135

For a lifting line parallel to the y-axis
(23) becomes

~ f % ix- a)2- 13%2]Y2- z2 Ix -a)2- P2(Y2+2z2)l (x- a)r

J(
@z(%YYz) = p—x hl

Y2+Z2)2 ~x-a)2- 132(y2+z2)J 3/2} ‘1
(

(25)

When-integrated by parts, equation (25) becomes

lN(R2 - ~2z2)r(yl)
%!

@z(%Y,z) =
2Yr(x2- 92Z2)(Y2 + Z2)R

% .

M’(Y1)
h2 XY(R2 - ~2Z2) —

1

J

W1

Tx
hl (x2 - ~2Z2) (Y2 + z2)R

When one or both l~ts of the first term of equation

(26)

(26) are the inter-
section of the I&ch cone from point (x,Y,z) with the lifting line, these
limits are neglected because only the finite part is to be taken. For
lifting lines that represent airfoils, r i.szero at each end of the line;
therefore, in this case eqwtion (26) becomes

This

ar(y~)

J
h2 2Cf(R2-

@z(x,Y,z) = -: h
P%-

1 (X2 - ~2z2)(Y2+ Z2)R

result was obtained in reference 6 by using vortex

d.yl

theory.

(27)

‘Myl)’ iS zero, e~tion (26) becomesWhen —
WI

——. —-—. ———.__ — -——
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@zb%Y,z) = ‘r
274X2 - F2zq

Equation
obtained

The

(~X2-p2~y-@)2+2z2j(y -h2) -

[ 1$(y-h2)2+z2 2- 1PqjY - hfJ2 + Z2

42-~2b-“hl)2+2+!!(Y-‘,)
[ N(Y-hl)2+z2 2- -

\

P2KY - yhl)2 + Z2

(28)

(28) is the uywash from a
in reference 11.

horseshoe vortex; this result was first

velocity potential in s~ce
dr

expressed h terms of r and —.

gives

due to an unbent lifting line can %e

Integrating equation (22) by parts

dr
For a horseshoe vortex — is zero and

WI

~h~) =’I’(h2)

therefore,’the potential in space due to a horseshoe vortex is

r

The com~nents

~-zx- a)2 - B2(Y - h2)2 - ~2z2

(y - h2)X

7

differe~tiation.

(y - hl)X J
of the velocity can be found from equation (30)‘by

(29)

(30)

..—. ~-. .— —-—----- .-. ..—-- ——--- . ..——— — ————
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Lifting line of constant slope.- The potential due to a lifting line
of constsmt slope can be expressed as (from equation (22))

$=& ‘2 ‘(’-’+(”) ~
“(Y2+Z2JG”’‘3’)

where the equation of the lifting

When integrated

Y1 =

line is

~l+k

by parts, equation (31) becomes

J’
‘2 dtiyl) tan-l1

~.[~ ‘+)2 - ~2(y2+z2) ~1 (3,)

Z—fihl, ml

( )
-k .2

,x-y~ -—
m m

w

I

—.
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The potential due to a bent lifting line as shown in figure ~(a) is

@ . TM, ~n.l

.~x-~y _,2(y_;y _ ,2=2

2Yf

t-~)(’-;+)-~ -

l“(0)tan-l
~~(x + :)2 - ,2(y2 + .’2)

y(~ + k) - Z2

r(0)tan-l

.

~_

‘2
mz x--- m p2(y2 + .2)

y(~ - k) - Z2

f’”

b/2

[

\/( )-

Y1 -’2
zx -

dr’
p2(Y2 + .2)

&
tan-l dYl

d~l
.0 (Y x :YL’) - z

m/m

(33)

-.—. .— .-— .—. .————— —---- ——..—— .- —— - —
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where m is the slope of the bent lifting line
(see fig. 5). When the lifting line is used to
~ -b/2) and I’(b/2) are
lifting line can be found

zero. The components
by differentiation of

When d.~yl)/dyl is
—1

when y is positive .
appro~te a wing, .“

of the velocity for a bent
equation (33).

zero equation (33) becomes
,

q/(+)2 _,2pQy,2z2

()(b)

b
—-
2 k z,

Y ,x -—-—-—
m m

tan-l

an-l

4/F‘w - ‘2(Y+‘2) _
y(lILX+ k) - 22

.

ti)

k2
mzx—--

m @(y2 + z,)1, (34)
.2

y(mx-k)+—
m -1

Equation (34) is the expression for the potential in syce due to a
vortex of constant strength as shown in figure 5(b). Since the velocity
components can be found by differentiation, the upwash is given by

-.—— —



I

\

{

(
r [(Y - hp)(~ - y) + z~ ~mx - h2)2 - ~zmp(y - hz)~ - 2P2Df’Z2(Y - hz)(m - Y) ~

#z=~

[ 1[m(y-h2)2+22(IIIK- !3
Y)2 + Z2(1 - P2m2j - :)2 - $2[(Y - h2)2 + z2]

P
u
u

.
I

1

I
1

m
{[ 1

-y(mx + y) + Z2 (X2 - pzyp) + 2p2z2y(IuX + Y)}

(Y2 + zq~mx + y)p + 22(1 - i$npg ~~

{[
m y(mx - y) + z2](# -f J2yL) - 2~2Z2Y(mX ~ Y)}

‘)

‘ (35)

(Y2 + zz)~mx - y)z + 22(1 - P2m2g ~~

where the orfgin of the axes has been transformed to the point
()
:,0,0 of the original

8yetem of axes.’ E~tion (35) can be obtained from the results of reference 6.
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Approximations to the

Although the integrals that
much easier to evaluate than the

Upwash fromLiftingLines
*

arise when lifting lines are used are
integrsllsof exact lifting-surface

expressions, many of the integrals that arise in connection with the
use of lifting lines cannot be evaluated in closed form and many
involve singularities. It is therefore desira%le to obtain approximate
expressions for lifting lines.

Approximation of an unbent lifting line.- Equation (28) can be used
to approximate an unbent lifting line by a series of horseshoe vortices.
The upwash from a series of horseshoe vortices that approximate the
circulation by a series of ste~: as shown in figure 6(a) is

xY~(x2 - PYiz - 2B2z2)~(Yi) - r(yi-lfl
(36)

(X? - p2z2)(Y~2+ z2) !/x2 - pa~p - pzzz

.

where Yi denotes y - y~ and i takes on all integral values from O
to n. The upwash from a series of horseshoe vortices that approximates
the circulation by a

n

$2 = -~
I
i=o

series of steps as shown in figure 6(b) is

XY@.- @?Y# - 2p2z2)~(Yi+l) - r(yifl - (37)

(X2 - $pzp)(y~z + Z2) X2 - @Y~2 - pzzz

The average of equations, and (37) is

n

L

ai(xz - @Yi2 - 2@z2)~(Yi+l) -
flz= -~

r(yi-lfl
(38)

i=o
(X2 - pzzp)(Y~2 + Z2)~xz - #(Y~2 + Z3

Equation (38) is the upwash from a series of horseshoe vortices which
approximates the circulation by a series of steps as shown @ figure 6(c).
In general, for points directly behind the lifting line, equation (38)
should give best agreement with ’theexact lifting line when y (the
coordinate for the field point) is midway between consecutive values of
Yi. An expression for the sidewash may easily be obtained by using the
sidewash due to a horseshoe vortex in the same manner that the upwash due
to a horseshoe vortex was used in obtaining equation (38).

.

.

.
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Approximation of bent lifting lines .- A bent liftlng line can be approximated by a series
z
~

of vortices of the form ~hown in figure 7 plus terms @vlng the effect of the bend in the center P
of the lifting line. Figure 8 shows a series of vortices of the f’oru shown in figure 7 didrib-

uted along a bent lifting line. The up?a8h from such a system of vortices is .
~

P

e

o

$4 “ -~ r {EY-Yi)(= -Y)+zq[m +Y,)’-B’#(Y-Yi)q - “2@z2(y-yi)(-nR-Y) [r(Yi+l) - IIYJJ
.

I=nl -m~y-yi)’ +z~~~+ y)’+ z2(l - P’m’j (x+%)’ - P2(Y-YI)2- P’.*

--

‘c{~Y-Yi)(mx-Y)+.q ~mx-yi)’ - #m’(y-y@ -21Pm’z’(Y-Yi)(mx-Y) [IYi+l) - llYiJj

J&

id. [m (y - yi)’ + z~~m - y)’ + %2(1 - D2m2i_J D’(Y - Yi)’ - B’.’

I’(o)m ~y(n + y) + JJ(x2 - j3’y’)+ 2#z*y(Izx + y)

[
‘x(y’ + z’) (IEX+ y)’ + Z’(1 - P%’] x“- flqy ’+z’)

I?(0)m y(a - y) + 24(x2 . ~2y*) - 2~2z*y(mx - y)

2&2 + z’)~m - y)’ + 22(1 - P&J - pqy=’ + 22)
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where nl is related to negative values of y and n2 is related to
positive vslues of y. The first term on the right side represents the
vortices for negative values of y; the second represents the vortices
for positive values of _y. The remaining terms take into account the
effect of the bend in the center of the lifting line. Equation (39) is
set up for a distribution of vortices as shown in figure 8.

Equation (38) canbe used to approximate a bent lifting line if X
is replaced by Xi where Xi denotes x - xi. When this is done, the
result is

n

I

xiYi(x# - @Yi2 - 2j32z2)@Yi+l) -
$2. _~

r(yi.ljj
(40)

~a (Xip - ppzp)(Yip + Z2) i? - p2(Yi2 + 22)
..

.

Equation (@) approximates a bent lifting line by adding the effects of a
series of horseshoe vortices as shown in figure 9(a) when the circulation
is symmetrical about the center of the lifting line, and when the points
(xi,Yi) are chosen symmetrically about the center of “thelifting line.
When the circulation is not symmetrical and/or the points (xi,yi) are
not chosen symmetrically about the center of the lifting line, equation (~) .
approximates a bent lifting line by a series of vortices as showg in
figure 9(b). The downwash from an infinite line vortex of constant
strength and infinite.slope is zero; therefore, equation (~) should give
a reasonable approximation to a bent lifting line.

R~sum~~d Discussion of ~oretical Development

In the theoretical development exact and approximate formulas have
been developed for the potential and the upwash due to thin wings. An
expression for the potential in space due to a thin wing was derived from
an expression for the partial derivative of the potential with respect to
the free-stream direction. The upwash was found by differentiation of this
expression..
plan form.
to find the
expressions
for lifting

Formulas are derived-for the upwash ii the wake and on the
The results of the exact expression for thin wings were used
potential and the upwash due to lifting lines, and the e~ct
for.lifting lines were used to find approximate expressions
lines.

In actual calculations better approbations to lifting surfaces
may be obtained by using several lifting lines or their approximations
distributed along the chord. Another a>proach would be to distribute
finite vortices over the plan form. Either of the preceding methods

.
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may be used to find a good
surface, provided that the

23

approxhaz ion to the downwash from a lifting”
apex of the hyperbola formed by the inter-

section-o; the Mach cone with the plane of the wing does not lie on the
plan fozm. For cases where the apex is on the plan form there is a
finite contribution along the Mach cone. This contribution may be
evaluated by the same method that was used to evaluate the double inte-
gral in eqtition (15).

It should be remadbered that this paper
effects of thickness; however, these effects
stiply by use of source distributions.

does not discuss
may be evaluated

the
rather

APPLICATIONS

The results of the theoretical development canbe applied to a nuniber
of problems. A few of these problems will be considered here.

Potential ~d

When x approaches infinity

@(oJ,y,z]=~
21rL

,

Upwash at Infinity

equation (6) becomes

J @q
dq dy~.

Ty2+z2

Since

integrating the preceding expression with respect to xl gives

Eqpation
infinity
noted in

(41) is the same equation as the equation
behind an airfoil in subsonic flow and is
references 1 and 2.

(41)

for the potential at
a well-lmown result

.— -.— ——-— — —- .— —
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The upwash at infinity is give~ by
.

,

(42)

Integrating equation (@) by parts and replacing @~ by I’ gives

h2

./

b. ~dr

j.= ‘r
1

2Yr(Y2+ 22) - 2—fl y222 ml (43)
hl hl

For wings I’(hi) and r(h2) are zero, the first termof e~tion (43)
becomes zero, andthe remaining term gives the upwash at infinity. The
same res@t is given in reference 6.

The Upwash

m @x on the

Since

equation (17) reduces

for a Flat Umwept Wing of Infinite Span

2aVplan form of an infinite unswept wing is -—.
P

Wq ~
—=
&l

to

@z(xjYjO) =-aV

For points in the wake, eqyation (14) gives

The preceding results sre the well-known equations for the upwash in the
z = O plane for the two-dimensional, flat, unswept wing.

v

,

Camber and Twist Necessary to Give Specified ‘

Lift Distributions
w

Equation (17) maybe used to find the camber and twist necessary to
give a specified lift distribution. The local angle of attack is given
by

(44)

._ ..
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and the pressure coefficient is given by

.,.

p_ @xl- -—
v (45)

The local angle of attack for a given lift distribution, derived from
eqwtions (17), (44), and (45), is

aP -

( 46)

As an example, the local angle of attack of a rectangular wing with
constant load is now considered.

When the pressure distribution is a constant, equation (~) becomes

For the rectangular
equation (47) becomes

wing in the region unaffected by the tip,

+

In the region affected by the tip, equation

(10 t

(47)

(48)

(47) becon&

. +P 1 vx- xl)2-F@
a -—

4PW (x - xl)
X+$y

(49)

where the coordinates are now located at the intersection of the leading
edge and the tip. (See fig. 10.) After the integration is performed
eqmtion (49) becomes

—

.=&(_*+Jq25+,tm-&---)

Equation (50) awees with the results in reference 10.

. . .—. —. ——.—- -—- —--.— .—.——. ————— .—-. —— —— —

!

(50)
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UpWash Close to the Trailing Edge .

The value of
the trailing edge

the vertical perturbation veloci@ hmediatel.y behind
can be obtained from equation (17).

In this application the concept of cancellation of pressure is
utilized. It is assumed that the wing extends past the trailing edge.
Since the pressure must be zero through the wake, this pressure behind
the trailing edge must be canceled. The boundary conditions in the wake
me then satisfied by the wing pressure extended past the trailing edge
and the cancellation pressure. The upwash is therefore made up of the
effect of the pressure on the ting, its efiension behind the wing, and
the cancellation of the pressure behind the trailing edge.

For trailing edges which sre perpendicular to the free-stream direc-
tion the application of equation (17) (using the cancellation-of-pressure
soncept) to the upwash immediately behind the trailing edge leads directly
to the relation

(@z)m = -UmV + $dx)m (51)

~here u~ is the local angle of attack of the wing at the trailing edge.
Che result given by equation (51) was obtained in references 1 and 2 from ,,
~ physical-consideration. When the
[17) yields

Zquation (52)

(@z)m = -Umv +

trailing edge has a slope m, equation

bfk)m v!32m2-,.1
al

is also obtained in reference 1.

(52)

UpWash in the Wake behind a Rectangular Wing

Pitching about Its Leading Edge

As an example to illustrate downwash calculations the upwash in the
plane of the wing fipm a rectangular-pitching-wingis now calculated.
(See fig. 10 for axes used in analysis.) For stationary axes a pitching
wing moves in the arc of a circle; therefore, for axes fixed in the wing
a pitching wing in linearized flow can be replaced by a wing which has a
local angle of attack that varies linesrly in the free-stream direction.
It is assumed that the wake remains in the z = O plane and that the
rolling-up of the trailing vortices can be neglected.

.

—— —. — —.
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The wake
One region is

27

behind a rectangular wing may be divided into two regions.
not affected by the tip or tips and is therefore a region

which has a two-dimensional flow. The other region is the region affected
by the tip or tips; in this region the flow is three-~ensional.

There is no upwash in the wake behind a two-dimensional unswept,
pitching wing; therefore, only the region affected by the tips of the
wing has upwash. Since the analysis is based on linearized flow, the
two tip effects add directly and therefore only one tip need be treated.

The upwash in the z = O plane due to one tip of a rectangular
pitching wing is shown in figures 10 and 11. The velociw potential and
the pressure on a rectangular wing pitching about the leading edge were
obtained by transforming the expressions given in reference.12 for the
veloci~ potential and the pressure on a rectangular wing pitching about
the half-chord line.

The upwash at the trailing edge was foundbyusing equation (51).
The upwash close to the trailing edge was found by use of e~tion (17).
The evaluations of the integrals were perfomed numerically. Equation (17)
was derived to find the downwash on the plan form, but it ‘mybe used
in the wake by applying the cancellation-of-pressure concept.

‘A lifting line was used for calculating the upwash 2 or more chords
behind the trailing edge inasmuch as this method was found to be accwate
to two decimal places in this region.

The upwash at infinity was foundbyusing equation (43). At infinity
the upwash in the z = O plane for 13= C = 1 is givenby the following
expressions:

●

For y>O

[

4q(Y+l)2_y_~
flz=–

31’r~~j
—

for -l<y<o

for y < -1

. (y + 1)2

1v-+y’~ ‘—- 2

(53a)

(53b)

(53C)

—.—-——. ..—.—— —-——.-— .-———— — - -—- ——..
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.

of the UpWash from a .

Rectangular Pitching Wing
. .

The calculation of the downwash from the rectangular pitching wing
together with results of reference 6 indicates that, for regions some
distance behind the trailing edge, lifting lines give very good approxi-
mations to the actil flow fields. In many cases it is simpler to use
the approximation givenby equation (38) than to use the exact lifting-
line expression.- The accuracy of eqmtion (38) was investigatedby cal-
culating the upwash frm an unbent lifting line and comparing the results
with the results obtained using equation (38). The unbent lifting line
used was one that approximates the flow from the pitching rectangular
wing.

.

.

In figure 12 the values of the upwash from the exact and the approxi-
mate lifting lines are plotted. Ten equally spaced pints across the tip
region were used in the approximation. It can be seen that for this case
in most regims the approximation yields results which me as reliable as
the exact values. If greater accuracy is required, it should be remem-
bered that the accuracy of the approximation increases as the number of
points is increased.

.

Approximation to the UpWash from a

.Bent Lifting Line

The approximation to the upwash from a bent lifting line given by
equation-(39) was use-dto find the downwash along the line Z=o,y=o
behind a triangular wing as shown in figure 13. Figure 13 shows the
values given by equation (39) for 10 points acro,ssthe semispan, the exact
lifting line, and the exact linearized solution. The values for the exact
lifting line for this case were taken from refererice6 and the values of
the exact linearized solution were taken from reference 3.

Figure 13 shows good agreement between the approximate and exact .
bent.lifting lines. In general, the accuracy of the approximation will
increase as the nuder of points used in the approximation is increased;

therefore, it is expected that the difference be~een the e~ct ~d
approximate expressions given in figure 13 could be decreased by increas-
ing the number of points across the semispan.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Iangley Air Force Ease, Vs., April 12, 1950
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APPENDIX

D~TION UNDER THE INTEGRAL SIGN

OF TEE EXPRESSION FOR @

The fact that equation (6,)may be differentiated with respect to z
under the integal sign without-consideration of the variable lhits can
be proved as follows:

If it is assumed that the right side of equation (6) can be
differentiated by differentiating only the integrand, then

.

- Z2)R2 + ~2z2(y2 + z2)’X’
@z= & yj ‘x ‘Y2 (Y2 . ~2)%3 % Wl (Al)

T

If the preceding equation is correct, the potential may be expressed by

since

I-)z

Interchanging

$ “j @z(’)Y,~)~
co

the order of integration of equation (A2) yields

(A3)

.-. .—. . . ... —.. .—_ —..— ..—. —— -——— — ..-
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The result of performing the first inte~ation in equation (A3) is

(A4)

Equation (Ah) is the same as equation (6); therefore, it has been shown
that equation (6) may be differentiated with respect to z under the
inte~al sign without regsrd to the variable Mmits, SMar proof for
the other velocity components can also be obtained.

.
.

.

.

.
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Mach cone

‘7
Arbitmry plan form
in z =0 Diane,

rary point
z)

cone

(a) Arbitrary point above plan fomn.
T

L.64103.1

Figuxe l.- The intersection of forward Mach cone from point (x,Y,z)’with
arbitrary plan fomn.
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.

z
i

Intersection of Mach cone
with plan form

Arbitrary plan form
. in z =0 plane

(b) Arbitrary point above wake.
-

L-64.lo4.l
Figure 1.- Concluded.
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Intersection of Mach cone

Figure 2.- Regions of ide~tioa fos
a petit affectedly the -e.

__ . ..- ---
.- ..-. _—. - —- -—--

.__ —-—
—— -- ——---. .—.— --—__———— -——-—



.

*

.

.

——— -—-

.



39

.

y+e

. . .

~i~e 3”” Vortices associated with the W3ions of inteption~
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x

(a) Bent lifting line.

Vohex x

3.0,) ~Y

(b) Vortex of constant strength.

Figure 5.- Lifting ltie of constant slope.
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(a) A~roximation that leads to equation (36).

(b) Approximation that leads to equation (37).

(c) Approximation that leads to equation (38).

Figure 6.- Approximations of the spareloading by series of rectangles.
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Figure 7.- Finite vortex of the form used to apprmimate
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line.
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(a) Symmetrical loading and symmetrically distributed points.

J

-

a= \
—

(b),Unsymmetrical loading and/or’unsymmetrically distributed
points.

Figure 9.- E!ent lifting lines approximated by a series of horseshoe
vortices.
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Figure 10.- Contour plot of the downwash from a pitching rectangular
wing in Z = O phe.

.
y]p,ch@5

Figure 1.1.- Downwash behind a pitching rectangular wing in z . 0 plme,
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Figure 12.- Downwash from a lifting line and its approximation by a series
of horseshoe vortices at ten equally spaced mints. (Lifting line
approxhates a rectangular pitching wing.)
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Figure 13. - Downwash determined by exact and approximate lifting lines
alone the line z . 0 Y = O beh~d a triangular wing with aspect
~tiO Of 3.2. M=@.
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